Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Мухин Д.Г.

В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?

Вниз   Решение


Докажите, что  cos2($ \alpha$/2) = p(p - a)/bc и  sin2($ \alpha$/2) = (p - b)(p - c)/bc.

ВверхВниз   Решение


На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?

ВверхВниз   Решение


Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?

ВверхВниз   Решение


Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 100]      



Задача 65849

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 9,10

Существует ли такое натуральное n, что десятичная запись числа 2n начинается цифрой 5, а десятичная запись числа 5n начинается цифрой 2?

Прислать комментарий     Решение

Задача 65853

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 9,10,11

Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

Прислать комментарий     Решение

Задача 77868

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9

Сколько цифр имеет число 2100?

Прислать комментарий     Решение

Задача 116374

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10,11

Сравните числа  

Прислать комментарий     Решение

Задача 30848

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10

Докажите, что  479 < 2100 + 3100 < 480.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .