Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Основание KM равнобедренного треугольника KLM является хордой окружности, центр которой лежит вне треугольника KLM. Прямые, проходящие через точку L, касаются окружности в точках P и Q. Найдите площадь треугольника PLQ, если  KL = LM = ,  ∠KLM = 2 arcsin ,  а радиус окружности
равен 1.

Вниз   Решение


На боковой стороне равнобедренного треугольника как на диаметре построена окружность, делящая вторую боковую сторону на отрезки, равные a и b.
Найдите основание треугольника.

ВверхВниз   Решение


Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

ВверхВниз   Решение


Докажите равенство:

4arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{1}{239}}$ = $\displaystyle {\frac{\pi}{4}}$.


ВверхВниз   Решение


Докажите равенство:

arctg x + arctg y = arctg $\displaystyle {\frac{x+y}{1-xy}}$ + $\displaystyle \varepsilon$$\displaystyle \pi$,

где $ \varepsilon$ = 0, если xy < 1, $ \varepsilon$ = - 1 , если xy > 1 и x < 0, $ \varepsilon$ = + 1, если xy > 1 и x > 0.

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 147]      



Задача 64317

Темы:   [ Подсчет двумя способами ]
[ Необычные конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 6,7

Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:
  а) на каждом маршруте есть ровно три остановки;
  б) каждые два маршрута либо вовсе не имеют общих остановок, либо имеют только одну общую остановку.
Какое наибольшее количество маршрутов может быть в этом пригороде, если в нём всего 9 остановок?

Прислать комментарий     Решение

Задача 64623

Темы:   [ Теория игр (прочее) ]
[ Признаки делимости на 11 ]
[ Оценка + пример ]
Сложность: 4-
Классы: 8,9,10

Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше?

Прислать комментарий     Решение

Задача 64628

Темы:   [ Классическая комбинаторика (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Оценка + пример ]
Сложность: 4-
Классы: 9,10,11

В языке племени АУ две буквы – "a" и "y". Некоторые последовательности этих букв являются словами, причём в каждом слове не меньше одной и не больше 13 букв. Известно, что если написать подряд любые два слова, то полученная последовательность букв не будет словом. Найдите максимальное возможное количество слов в таком языке.

Прислать комментарий     Решение

Задача 65386

Темы:   [ Теория алгоритмов (прочее) ]
[ Доказательство от противного ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

На полоске 1×N на 25 левых клетках стоят 25 шашек. Шашка может ходить на соседнюю справа свободную клетку или перепрыгивать через соседнюю справа шашку на следующую за ней клетку (если эта клетка свободна), движение влево не разрешается. При каком наименьшем N все шашки можно поставить без пробелов в обратном порядке?

Прислать комментарий     Решение

Задача 66113

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9,10

Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 147]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .