Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Почему равенства  11² = 121  и  11³ = 1331  похожи на строчки треугольника Паскаля? Чему равно 114?

Вниз   Решение


Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

ВверхВниз   Решение


Из набора гирек с массами 1, 2, ..., 101 г потерялась гирька массой 19 г. Можно ли оставшиеся 100 гирек разложить на две кучки по 50 гирек в каждой так, чтобы массы обеих кучек были одинаковы?

ВверхВниз   Решение


Докажите, что уравнение   x/y + y/z + z/x = 1   неразрешимо в натуральных числах.

ВверхВниз   Решение


Докажите, что биссектрисы равностороннего треугольника делятся точкой пересечения в отношении  2 : 1,  считая от вершины треугольника.

ВверхВниз   Решение


Найдите производящие функции последовательности многочленов Фибоначчи  F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
и последовательности многочленов Люка   L(x, z) = L0(x) + L1(x)z + L2(x)z² + ... + Ln(x)zn + ...
Определения многочленов Фибоначчи и Люка можно найти в справочнике.

ВверхВниз   Решение


Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 66038

Тема:   [ Непрерывное распределение ]
Сложность: 2+
Классы: 8,9

Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

Прислать комментарий     Решение

Задача 65278

Темы:   [ Непрерывное распределение ]
[ Условная вероятность ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 9,10,11

Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

Прислать комментарий     Решение

Задача 65305

Темы:   [ Непрерывное распределение ]
[ Средние величины ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9,10,11

Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.

Прислать комментарий     Решение

Задача 65314

Темы:   [ Непрерывное распределение ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.

Прислать комментарий     Решение

Задача 65772

Тема:   [ Непрерывное распределение ]
Сложность: 3+
Классы: 9,10,11

В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол.
Найдите вероятность того, что вершина A окажется восточнее двух других вершин.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .