Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что  ½ (x² + y²) ≥ xy  при любых x и y.

Вниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.

ВверхВниз   Решение


Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

ВверхВниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

ВверхВниз   Решение


Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

ВверхВниз   Решение


Докажите, что     при  x ≥ 0.

ВверхВниз   Решение


Докажите, что  (a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.

ВверхВниз   Решение


Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

ВверхВниз   Решение


Саша и Илья должны были пробежать 600 метров. Но Саша первую половину времени бежал, а вторую – шёл. А Илья первую половину дистанции бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 154]      



Задача 65216

Темы:   [ Задачи на движение ]
[ Биссектриса угла ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3
Классы: 7,8

В некоторый момент угол между часовой и минутной стрелками равен α. Через час он опять равен α. Найдите все возможные значения α.

Прислать комментарий     Решение

Задача 65491

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 5,6

Зелёная и синяя лягушки находились на расстоянии 2015 метров друг от друга. Ровно в 12 часов дня зелёная лягушка прыгнула навстречу синей
на 9 метров. Через минуту синяя лягушка прыгает навстречу зелёной на 8 метров. Еще через минуту зелёная лягушка снова прыгает на 9 метров, и так далее. В какое время лягушки встретятся? (Каждый прыжок происходит мгновенно.)

Прислать комментарий     Решение

Задача 66276

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 6,7,8

Саша и Илья должны были пробежать 600 метров. Но Саша первую половину времени бежал, а вторую – шёл. А Илья первую половину дистанции бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч?
Прислать комментарий     Решение


Задача 66501

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8

Велосипедист проехал из пункта А в пункт В, где пробыл 30 минут, и вернулся в А. По пути в В он обогнал пешехода, а через 2 часа встретился с ним на обратном пути. Пешеход прибыл в В одновременно с тем, когда велосипедист вернулся в А. Сколько времени потребовалось пешеходу на путь из А в В, если его скорость в четыре раза меньше скорости велосипедиста?
Прислать комментарий     Решение


Задача 66574

Темы:   [ Задачи на движение ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Мальчик едет на самокате от одной автобусной остановки до другой и смотрит в зеркало, не появился ли сзади автобус. Как только мальчик замечает автобус, он может изменить направление движения. При каком наибольшем расстоянии между остановками мальчик гарантированно не упустит автобус, если он знает, что едет со скоростью, втрое меньшей скорости автобуса, и способен увидеть автобус на расстоянии не более 2 км?
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 154]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .