|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Решите уравнение xx4 = 4 (x > 0). На сколько частей делят пространство n плоскостей, проходящих через одну точку, если никакие три не имеют общей прямой? CD - медиана треугольника ABC. Окружности вписанные в треугольники ACD и BCD касаются отрезка CD в точках M и N. Найдите MN, если AC - BC = 2.
Из двух треугольных пирамид с общим основанием одна лежит внутри другой. Может ли быть сумма ребер внутренней пирамиды больше суммы ребер внешней? На доске в ряд в некотором порядке выписаны несколько степеней двойки. Для каждой пары соседних чисел Петя записал в тетрадку степень, в которую нужно возвести левое число, чтобы получилось правое. Первым в ряду на доске шло число 2, а последним – число 1024. Вася утверждает, что этого достаточно, чтобы найти произведение всех чисел в тетрадке. Прав ли Вася? |
Страница: 1 2 >> [Всего задач: 8]
На доске в ряд в некотором порядке выписаны несколько степеней двойки. Для каждой пары соседних чисел Петя записал в тетрадку степень, в которую нужно возвести левое число, чтобы получилось правое. Первым в ряду на доске шло число 2, а последним – число 1024. Вася утверждает, что этого достаточно, чтобы найти произведение всех чисел в тетрадке. Прав ли Вася?
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Найдите все положительные корни уравнения xx + x1–x = x + 1.
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|