ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли на числовой прямой расположить три отрезка чётной длины так, чтобы общие части каждых двух из них были отрезками нечётной длины?

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 354]      



Задача 61168

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:

arctg 1 + arctg $\displaystyle {\textstyle\dfrac{1}{2}}$ + arctg $\displaystyle {\textstyle\dfrac{1}{3}}$ = $\displaystyle {\dfrac{\pi}{2}}$.


Прислать комментарий     Решение

Задача 66359

Темы:   [ Метод координат (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Можно ли на числовой прямой расположить три отрезка чётной длины так, чтобы общие части каждых двух из них были отрезками нечётной длины?

Прислать комментарий     Решение

Задача 79441

Темы:   [ Геометрические интерпретации в алгебре ]
[ Правильные многоугольники ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 9,10,11

На доске после занятия осталась запись:

  "Вычислить  t(0) − t(π/5) + t(/5) − t(/5) + ... + t(/5) − t(/5),  где  t(x) = cos5x + *cos4x + *cos3x + *cos2x + *cosx + *".
Увидев её, студент мехмата сказал товарищу, что он может вычислить эту сумму, даже не зная значений стёртых с доски коэффициентов (вместо них в нашей записи *). Не ошибается ли он?

Прислать комментарий     Решение

Задача 98296

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема косинусов ]
[ Против большей стороны лежит больший угол ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

Прислать комментарий     Решение

Задача 102314

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 8,9,10

На координатной плоскости заданы точки A(0;2), B(1;7), C(10;7) и D(7;1). Найдите площадь пятиугольника ABCDE, где E — точка пересечения прямых AC и BD.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .