ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В доме из $2^n$ комнат сделали евроремонт. При этом выключатели света оказались перепутанными, так что при включении выключателя в одной комнате загорается лампочка, вообще говоря, в какой-то другой комнате. Чтобы узнать, какой выключатель к какой комнате подсоединён, прораб посылает несколько людей в какие-то комнаты, чтобы те, одновременно включив там выключатели, вернулись и сообщили ему, горела лампочка в их комнате или нет. а) Докажите, что за $2n$ таких посылок прораб может установить соответствие между выключателями и комнатами. б) А может ли он обойтись $2n-1$ такими посылками? Решение |
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 737]
а) Докажите, что за $2n$ таких посылок прораб может установить соответствие между выключателями и комнатами. б) А может ли он обойтись $2n-1$ такими посылками?
Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)
Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|