ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 965]      



Задача 116769

Темы:   [ Квадратный трехчлен (прочее) ]
[ Индукция (прочее) ]
[ Задачи с ограничениями ]
Сложность: 5-
Классы: 10,11

Автор: Карасев Р.

На координатной плоскости нарисовано n парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более  2(n – 1)  углов (то есть точек пересечения пары парабол).

Прислать комментарий     Решение

Задача 61452

Темы:   [ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 5
Классы: 9,10,11

  а) Пусть q – натуральное число и функция   f(x) = cqx + anxn + ... + a1x + a0  принимает целые значения при  x = 0, 1, 2, ..., n + 1.
Докажите, что при любом натуральном x число  f(x) также будет целым.
  б) Пусть выполняются условия пункта а) и  f(x) делится на некоторое целое  m ≥ 1  при  x = 0, 1, 2, ..., n + 1.  Докажите, что  f(x) делится на m при всех натуральных x.

Прислать комментарий     Решение

Задача 66616

Тема:   [ Многочлены (прочее) ]
Сложность: 5
Классы: 9,10,11

Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.
Прислать комментарий     Решение


Задача 73667

Темы:   [ Тождественные преобразования ]
[ Четность и нечетность ]
[ Поворот помогает решить задачу ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 7,8,9

По окружности выписаны n чисел  x1, x2, ..., xn,  каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого  k = 1, 2, ..., n – 1  сумма n произведений чисел, отстоящих друг от друга на k мест, равна нулю
(то есть  x1x2 + x2x3 + ... + xnx1 = 0,  x1x3 + x2x4 + ... + xnx2 = 0,  x1x4 + x2x5 + ... + xnx3 = 0  и так далее; например, для  n = 4  можно взять одно из чисел равным –1, а три других – равными 1).
  а) Докажите, что n – квадрат целого числа.
  б)* Существует ли такой набор чисел для  n = 16?

Прислать комментарий     Решение

Задача 76497

Темы:   [ Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 5
Классы: 9,10,11

Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение  x(xa)(xb)(xc) + 1  разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .