Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

При каких p и q уравнению  x² + px + q = 0  удовлетворяют два различных числа 2p и  p + q?

Вниз   Решение


Каждая сторона равностороннего треугольника разбита на n равных частей. Через точки деления проведены прямые, параллельные сторонам. В результате треугольник разбит на n2 треугольничков. Назовём цепочкой последовательность треугольничков, в которой ни один не появляется дважды и каждый последующий имеет общую сторону с предыдущим. Каково наибольшее возможное количество треугольничков в цепочке?

ВверхВниз   Решение


Автор: Дидин М.

Пусть D – основание внешней биссектрисы угла B треугольника ABC, в котором AB>BC. Сторона AC касается вписанной и вневписанной окружностей в точках K и K1 соответственно, точки I и I1 – центры этих окружностей. Прямая BK пересекает DI1 в точке X, а BK1 пересекает DI в точке Y. Докажите, что XYAC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 91]      



Задача 102259

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через центр окружности, вписанной в треугольник ABC, провели прямую MN параллельно основанию AB (M лежит на BC, N – на AC).
Найдите периметр четырёхугольника ABMN, если известно, что  AB = 5,  MN = 3.

Прислать комментарий     Решение

Задача 102260

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через центр окружности, вписанной в треугольник ABC, провели прямую MN параллельно основанию AB (M лежит на BC, N – на AC).
Найдите длину отрезка MN, если известны периметр  P  = 14  четырёхугольника ABMN и длина основания  AB = 6.

Прислать комментарий     Решение

Задача 66653

Темы:   [ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10

Автор: Дидин М.

Пусть D – основание внешней биссектрисы угла B треугольника ABC, в котором AB>BC. Сторона AC касается вписанной и вневписанной окружностей в точках K и K1 соответственно, точки I и I1 – центры этих окружностей. Прямая BK пересекает DI1 в точке X, а BK1 пересекает DI в точке Y. Докажите, что XYAC.
Прислать комментарий     Решение


Задача 53865

Темы:   [ Биссектриса угла ]
[ Подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA1 и BB1. Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

Прислать комментарий     Решение

Задача 66754

Темы:   [ Биссектриса угла ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,11

К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 91]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .