ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]
Через точку M проведены две прямые. Одна из них касается некоторой окружности в точке A, а вторая пересекает эту окружность в точках B и C, причём BC = 7 и BM = 9. Найдите AM.
Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.
Из одной точки проведены касательная и секущая к некоторой окружности.
Из точки A, лежащей вне окружности, проведены к окружности касательная и секущая. Расстояние от точки A до точки касания равно 16, а расстояние от точки A до одной из точек пересечения секущей с окружностью равно 32. Найдите радиус окружности, если расстояние от её центра до секущей равно 5.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|