ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Трапеции
>>
Равнобедренные, вписанные и описанные трапеции
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой. Решение |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 292]
У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?
Внутри трапеции ABCD с основаниями AD и BC отмечены точки M и N так, что AM = CN и BM = DN, а четырёхугольники AMND и BMNC – вписанные. Докажите, что прямая MN параллельна основаниям трапеции.
Дана трапеция ABCD с основаниями AD и BC, в которой AB = BD. Пусть M – середина стороны DС. Докажите, что ∠MBC = ∠BCA.
Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 292] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|