ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 78062

Темы:   [ Ломаные ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.

Прислать комментарий     Решение

Задача 64802

Темы:   [ Ломаные ]
[ Неравенство треугольника (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Докажите, что существует диаметр, не пересекающий эту ломаную.

Прислать комментарий     Решение

Задача 98294

Темы:   [ Ломаные ]
[ Вписанные и описанные многоугольники ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

Прислать комментарий     Решение

Задача 66922

Темы:   [ Ломаные ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.
Прислать комментарий     Решение


Задача 35460

Темы:   [ Ломаные ]
[ Неравенство треугольника (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Докажите, что всякую замкнутую ломаную периметра Р можно заключить в круг, радиус которого не превосходит Р/4.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .