|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1. Внутри параллелограмма ABCD выбрана точка O, причём ∠OAD = ∠OCD. Докажите, что ∠OBC = ∠ODC. Основанием прямой призмы служит ромб с острым углом α . Большая диагональ призмы равна d и составляет с плоскостью основания угол β . Найдите объём призмы. Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 424]
Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?
Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось.
Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету?
Саша пишет на доске последовательность натуральных чисел. Первое число N > 1 написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном N > 1 Саша сможет написать на доске в какой-то момент число 2011?
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 424] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|