ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной

а) не более $14а$;

б) не более $13а$?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



Задача 67031

Темы:   [ Максимальное/минимальное расстояние ]
[ Стереометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной не более $14a$?
Прислать комментарий     Решение


Задача 67085

Темы:   [ Максимальное/минимальное расстояние ]
[ Стереометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной

а) не более $14а$;

б) не более $13а$?
Прислать комментарий     Решение


Задача 66792

Темы:   [ Куб ]
[ Стереометрия (прочее) ]
Сложность: 6
Классы: 10,11

Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .