ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$. Решение |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 125]
Пусть H — точка пересечения высот треугольника ABC. Докажите, что расстояние между серединами отрезков BC и AH равно радиусу описанной окружности треугольника ABC.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 125] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|