Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 125]
В равнобедренном прямоугольном треугольнике радиус вписанной окружности равен 2.
Найдите расстояние от вершины острого угла до точки, в которой вписанная окружность касается противолежащего этому углу катета.
Докажите, что среди всех треугольников
ABC с фиксированным углом
и полупериметром
p наибольшую площадь имеет равнобедренный
треугольник с основанием
BC.
|
|
Сложность: 3 Классы: 9,10,11
|
В прямоугольном треугольнике ABC
с прямым углом C провели биссектрисы AK и BN, на которые
опустили перпендикуляры CD и CE из вершины прямого угла.
Докажите, что длина отрезка DE равна радиусу вписанной окружности.
Три окружности радиусов 1, 2 и 3 касаются друг друга внешним образом. Найдите радиус окружности, проходящей через точки касания этих окружностей.
В треугольнике ABC со сторонами AB = 3, BC = 4 и AC = 5 проведена биссектриса BD. В треугольники ABD и BCD вписаны окружности, которые касаются BD в точках M и N соответственно. Найдите MN.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 125]