ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Параллелограммы
>>
Частные случаи
>>
Ромбы. Признаки и свойства
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый четырехугольник $ABCD$ таков, что $\angle BAD = 2 \angle BCD$ и $AB = AD$. Пусть $P$ – такая точка, что $ABCP$ – параллелограмм. Докажите, что $CP=DP$. Решение |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 173]
Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.
Точка C лежит на стороне MN ромба KLMN, причём CN = 2CM и угол MNK равен 120o. Найдите отношение косинусов углов CKN и CLM.
Острый угол A ромба ABCD равен 45o, проекция стороны AB на сторону AD равна 12. Найдите расстояние от центра ромба до стороны CD.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 173] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|