Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 38]
|
|
Сложность: 5 Классы: 10,11
|
На прямоугольном столе лежат равные картонные квадраты k
различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть
любые k квадратов различных цветов, то какие-нибудь два из них
можно прибить к столу одним гвоздем.
Докажите, что все квадраты некоторого цвета
можно прибить к столу 2k-2 гвоздями.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Докажите, что количество способов разрезать квадрат $999 \times 999$ на уголки из трёх клеток делится на $2^7$.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Пентамино «крест» состоит из пяти квадратиков $1\times1$ (четыре квадратика примыкают по стороне к пятому). Можно ли из шахматной доски $8\times8$ вырезать, не обязательно по клеткам, девять таких крестов?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Существует ли прямоугольник, который можно разрезать на 100 прямоугольников,
которые все ему подобны, но среди которых нет двух одинаковых?
|
|
Сложность: 5 Классы: 10,11
|
У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если
а) N = 201; б) N = 400?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 38]