ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими? Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.) Решение |
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 737]
а) Докажите, что за $2n$ таких посылок прораб может установить соответствие между выключателями и комнатами. б) А может ли он обойтись $2n-1$ такими посылками?
Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)
Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу
Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|