ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Найдите объём правильной шестиугольной пирамиды со стороной основания a и радиусом R описанной сферы.

Вниз   Решение


Докажите, что площадь прямоугольного треугольника с острым углом в 15° равна одной восьмой квадрата гипотенузы.

ВверхВниз   Решение


Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка D такая, что $ \angle$CAD = 2$ \angle$DAB. Радиусы окружностей, вписанных в треугольники ADC и ADB, равны соответственно 3 и 2, а расстояние между центрами этих окружностей равно $ \sqrt{29}$. Найдите AD.

ВверхВниз   Решение


Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что  BK·AB = BO²  и
AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

ВверхВниз   Решение


Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.

ВверхВниз   Решение


Основанием пирамиды служит параллелограмм, соседние стороны которого равны 9 и 10, а одна из диагоналей равна 11. Противоположные боковые рёбра равны и каждое из больших рёбер равно 10 . Найдите объём пирамиды.

ВверхВниз   Решение


Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

ВверхВниз   Решение


Архитектор хочет расположить семь высотных зданий так, чтобы, гуляя по городу, можно было увидеть их шпили в любом (циклическом) порядке.
Удастся ли это ему?

ВверхВниз   Решение


В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.

ВверхВниз   Решение


У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 30857

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3
Классы: 6,7

Сколько цифр у числа 21000?

Прислать комментарий     Решение

Задача 67315

Темы:   [ Взвешивания ]
[ Показательные функции и логарифмы (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?
Прислать комментарий     Решение


Задача 67080

Темы:   [ Построения (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9,10,11

В прямоугольной системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график функции  $y = f(x)$.  Затем ось ординат и все отметки на оси абсцисс стёрли. Предложите способ, как с помощью карандаша, циркуля и линейки восстановить ось ординат, если
  а)  $f(x) = 3^x$;
  б)  $f(x)$ = logax,  где  $a$ > 1  – неизвестное число.

Прислать комментарий     Решение

Задача 67029

Темы:   [ Построения (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 9,10,11

В декартовой системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график показательной функции $y=3^x$. Затем ось $y$ и все отметки на оси $x$ стёрли. Остались лишь график функции и ось $x$ без масштаба и отметки 0. Каким образом с помощью циркуля и линейки можно восстановить ось $y$?
Прислать комментарий     Решение


Задача 66613

Темы:   [ Показательные неравенства ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4
Классы: 10,11

Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .