Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?

Вниз   Решение


Докажите, что

$\displaystyle \left.\vphantom{\frac{a+b}{c}=\cos\frac{\alpha -\beta }{2}
}\right.$$\displaystyle {\frac{a+b}{c}}$ = cos$\displaystyle {\frac{\alpha -\beta }{2}}$$\displaystyle \left.\vphantom{\frac{a+b}{c}=\cos\frac{\alpha -\beta }{2}
}\right/$sin$\displaystyle {\frac{\gamma }{2}}$,    и    $\displaystyle \left.\vphantom{\frac{a-b}{c}=
\sin\frac{\alpha -\beta }{2}}\right.$$\displaystyle {\frac{a-b}{c}}$ = sin$\displaystyle {\frac{\alpha -\beta }{2}}$$\displaystyle \left.\vphantom{\frac{a-b}{c}=
\sin\frac{\alpha -\beta }{2}}\right/$cos$\displaystyle {\frac{\gamma }{2}}$.


ВверхВниз   Решение


В параллелограмме ABCD диагональ AC больше диагонали BDM — такая точка диагонали AC, что четырехугольник BCDM вписанный. Докажите, что прямая BD является общей касательной к описанным окружностям треугольников ABM и ADM.

ВверхВниз   Решение


На прямой l даны точки A, B, C и D. Через точки A и B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их продолжения) пересекают прямую l в двух фиксированных точках.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.
Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.

ВверхВниз   Решение


а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов против часовой стрелки и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт?

Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?

б) У Саши есть такая же волшебная шоколадка. Он каждую минуту отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов по часовой стрелке и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке.

Вверх   Решение

Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1010]      



Задача 66630

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

Прислать комментарий     Решение

Задача 67331

Темы:   [ НОД и НОК. Взаимная простота ]
[ Разложение в произведение транспозиций и циклов ]
Сложность: 3
Классы: 9,10,11

а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов против часовой стрелки и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт?

Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?

б) У Саши есть такая же волшебная шоколадка. Он каждую минуту отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов по часовой стрелке и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке.
Прислать комментарий     Решение


Задача 73608

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Дискретное распределение ]
Сложность: 3
Классы: 8,9,10

На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы
  а) ровно 4 клетки?   б) ровно 5 клеток?   в) все 8 клеток?

Прислать комментарий     Решение

Задача 73613

Темы:   [ Целочисленные и целозначные многочлены ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 8,9,10

Каждое неотрицательное целое число представимо, причём единственным образом, в виде     где x и y – целые неотрицательные числа. Докажите это.

Прислать комментарий     Решение

Задача 76433

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9,10

Сколькими различными способами можно разложить натуральное число n на сумму трёх натуральных слагаемых? Два разложения, отличающиеся порядком слагаемых, считаются различными.

Прислать комментарий     Решение

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1010]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .