ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Савин А.П.

Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго?

Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу p крестиков, а второму — q ноликов.

   Решение

Задачи

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 737]      



Задача 66489

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 6
Классы: 8,9,10,11

В доме из $2^n$ комнат сделали евроремонт. При этом выключатели света оказались перепутанными, так что при включении выключателя в одной комнате загорается лампочка, вообще говоря, в какой-то другой комнате. Чтобы узнать, какой выключатель к какой комнате подсоединён, прораб посылает несколько людей в какие-то комнаты, чтобы те, одновременно включив там выключатели, вернулись и сообщили ему, горела лампочка в их комнате или нет.
а) Докажите, что за $2n$ таких посылок прораб может установить соответствие между выключателями и комнатами.
б) А может ли он обойтись $2n-1$ такими посылками?
Прислать комментарий     Решение


Задача 66561

Темы:   [ Теория алгоритмов (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Деление с остатком. Арифметика остатков ]
Сложность: 6
Классы: 9,10,11

Глеб задумал натуральные числа $N$ и $a$, $a < N$. Число $a$ он написал на доске. Затем он начал выполнять следующую операцию: делить $N$ с остатком на последнее выписанное на доску число, а полученный остаток от деления также записывать на доску. Когда на доске появилось число $0$, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных чисел была больше $100 N$?
Прислать комментарий     Решение


Задача 66617

Темы:   [ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 6
Классы: 10,11

На доске написано несколько чисел. Разрешается стереть любые два числа $a$ и $b$, а затем вместо одного из них написать число $\frac{a+b}{4}$. Какое наименьшее число может остаться на доске после 2018 таких операций, если изначально на ней написано 2019 единиц?
Прислать комментарий     Решение


Задача 67194

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 6
Классы: 9,10,11

На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими?

Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)
Прислать комментарий     Решение


Задача 73626

Темы:   [ Теория игр (прочее) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 6
Классы: 7,8,9

Автор: Савин А.П.

Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго?

Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу p крестиков, а второму — q ноликов.
Прислать комментарий     Решение


Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .