ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что в таблице где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.б) В каждой ли строке (кроме первых двух) встречается число, кратное 3? Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]
По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?
На доске написаны n > 3 различных натуральных чисел, меньших чем (n – 1)!. Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил 100 = 14·7 + 2 и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.
а) Докажите, что в таблице где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?
Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим свойством: для каждого натурального числа k имеется бесконечно много точек этого цвета, координаты которых делятся на k.
Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|