Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600.

Вниз   Решение


Решить в натуральных числах уравнение:  

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


Автор: Шевяков В.

Имеются три литровых банки и мерка объемом 100 мл. Первая банка пуста, во второй – 700 мл сладкого чая, в третьей – 800 мл сладкого чая. При этом во второй банке растворено 50 г сахара, а в третьей – 60 г сахара. Разрешается набрать из любой банки полную мерку чая и перелить весь этот чай в любую другую банку. Можно ли несколькими такими переливаниями добиться, чтобы первая банка была пуста, а количество сахара во второй банке равнялось количеству сахара в третьей банке?

ВверхВниз   Решение


Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

ВверхВниз   Решение


Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

ВверхВниз   Решение


Незнайка выписал семь двузначных чисел в порядке возрастания. Затем одинаковые цифры заменил одинаковыми буквами, а разные – разными. Получилось вот что: ХА, АЙ, АХ, ОЙ, ЭМ, ЭЙ, МУ. Докажите, что Незнайка что-то перепутал.

ВверхВниз   Решение


Авторы: Pantaloni V., Southall E.

Король Артур хочет заказать кузнецу новый рыцарский щит по своему эскизу. Король взял циркуль и нарисовал три дуги радиусом $1$ ярд так, как показано на рисунке. Чему равняется площадь щита? Ответ округлите до сотых. Напомним, что площадь круга радиуса $r$ равна $\pi r^2$, $\pi\approx 3,14$.

ВверхВниз   Решение


  а) Докажите, что в таблице

где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.
  б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]      



Задача 66073

Темы:   [ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?

Прислать комментарий     Решение

Задача 66151

Темы:   [ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9,10

На доске написаны  n > 3  различных натуральных чисел, меньших чем  (n – 1)!.  Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил  100 = 14·7 + 2  и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.

Прислать комментарий     Решение

Задача 73633

Темы:   [ Доказательство от противного ]
[ Обратный ход ]
[ Числовые таблицы и их свойства ]
[ Рекуррентные соотношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

  а) Докажите, что в таблице

где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.
  б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?

Прислать комментарий     Решение

Задача 79335

Темы:   [ Доказательство от противного ]
[ Делимость чисел. Общие свойства ]
[ Раскраски ]
Сложность: 3+
Классы: 6,7,8,9

Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим свойством: для каждого натурального числа k имеется бесконечно много точек этого цвета, координаты которых делятся на k.

Прислать комментарий     Решение

Задача 116661

Темы:   [ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 5,6,7

Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .