Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу?

Вниз   Решение


Автор: Фольклор

Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?

ВверхВниз   Решение


На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL .

ВверхВниз   Решение


Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?

ВверхВниз   Решение


Наташа и Инна купили по одинаковой коробке чая в пакетиках. Известно, что одного пакетика хватает на две или три чашки чая. Этой коробки Наташе хватило на 41 чашку чая, а Инне – на 58. Сколько пакетиков было в коробке?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD диагонали BD и AC равны стороне AB . Найдите угол BCD и сторону AB , если угол CDA – прямой, BC=4 , AD=5 .

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса угла ACB пересекает эти высоты в точках L и K соответственно.
Докажите, что середина отрезка KL равноудалена от точек A1 и B1.

ВверхВниз   Решение


По кругу записано больше трех натуральных чисел, сумма которых равна 37. Известно, что суммы любых трех последовательных чисел равны между собой. Какие числа написаны по кругу?

ВверхВниз   Решение


Гулливер попал в страну лилипутов, имея 7000000 рублей. На все деньги он сразу купил кефир в бутылках по цене 7 рублей за бутылку (пустая бутылка стоила в то время 1 рубль). Выпив весь кефир, он сдал бутылки и на все вырученные деньги сразу купил кефир. При этом он заметил, что и стоимость кефира, и стоимость пустой бутылки выросли в два раза. Затем он снова выпил весь кефир, сдал бутылки, на все вырученные деньги снова купил кефир и т. д. При этом между каждыми двумя посещениями магазина и стоимость кефира, и стоимость пустой бутылки возрастали в два раза. Сколько бутылок кефира выпил Гулливер?

ВверхВниз   Решение


Хозяин обещает работнику платить в среднем     рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к     Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 102]      



Задача 105125

Темы:   [ Периодичность и непериодичность ]
[ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

В клетчатом прямоугольнике m×n каждая клетка может быть либо живой, либо мёртвой. Каждую минуту одновременно все живые клетки умирают, а те мёртвые, у которых было нечётное число живых соседей (по стороне), оживают.
Укажите все пары  (m, n),  для которых найдётся такая начальная расстановка живых и мёртвых клеток, что жизнь в прямоугольнике будет существовать вечно (то есть в каждый момент времени хотя бы одна клетка будет живой)?

Прислать комментарий     Решение

Задача 105130

Темы:   [ Периодичность и непериодичность ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

В ряд расположили n лампочек и зажгли некоторые из них. Каждую минуту после этого все лампочки, горевшие на прошлой минуте, гаснут, а те негоревшие лампочки, которые на прошлой минуте соседствовали ровно с одной горящей лампочкой, загораются. При каких n можно так зажечь некоторые лампочки в начале, чтобы потом в любой момент нашлась хотя бы одна горящая лампочка?

Прислать комментарий     Решение

Задача 116834

Темы:   [ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Дана бесконечная последовательность чисел  a1, a2, a3, ...  Известно, что для любого номера k можно указать такое натуральное число t, что
ak = ak+t = ak+2t = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное T, что  ak = ak+T  при любом натуральном k?

Прислать комментарий     Решение

Задача 73680

Темы:   [ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Средние величины ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Хозяин обещает работнику платить в среднем     рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к     Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Прислать комментарий     Решение

Задача 109885

Темы:   [ Периодичность и непериодичность ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

Существует ли такая бесконечная периодическая последовательность, состоящая из букв a и b, что при одновременной замене всех букв a на aba и букв b на bba она переходит в себя (возможно, со сдвигом)?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .