ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 9702]      



Задача 76424

Тема:   [ Отношения линейных элементов подобных треугольников ]
Сложность: 2+
Классы: 9

В треугольнике ABC из произвольной точки D на стороне AB проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 76517

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?

Прислать комментарий     Решение

Задача 88138

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Арифметические действия. Числовые тождества ]
Сложность: 2+
Классы: 5,6,7

На линейке длиной 9 см нет делений.
Нанесите на неё три промежуточных деления так, чтобы ею можно было измерять расстояние от 1 до 9 см с точностью до 1 см.

Прислать комментарий     Решение

Задача 102499

Тема:   [ Отношение площадей подобных треугольников ]
Сложность: 2+
Классы: 8,9

Прямая, параллельная стороне AB треугольника ABC, пересекает сторону BC в точке M, а сторону AC – в точке N. Площадь треугольника MCN в два раза больше площади трапеции ABMN. Найдите  CM : MB.

Прислать комментарий     Решение

Задача 102500

Тема:   [ Отношение площадей подобных треугольников ]
Сложность: 2+
Классы: 8,9

Прямая, параллельная стороне LM треугольника KLM, пересекает сторону KL в точке A, а сторону KM – в точке B. Площадь трапеции ALMB в три раза меньше площади треугольника ABK. Найдите  MB : MK.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .