Версия для печати
Убрать все задачи
На плоскости даны две замкнутые ломаные $a,b$ (возможно, самопересекающиеся) и точки $K$, $L$, $M$, $N$. Вершины ломаных и эти точки находятся в общем положении (т.е. никакие три из них не лежат на прямой и никакие три отрезка, их соединяющие, не имеют общей внутренней точки). Каждый из отрезков $KL$ и $MN$ пересекает ломаную $a$ в четном количестве точек, а каждый из отрезков $LM$ и $NK$ – в нечетном. Ломаная $b$, наоборот, пересекает каждый из отрезков $KL$ и $MN$ в нечетном количестве точек, а каждый из отрезков $LM$ и $NK$ – в четном. Докажите, что ломаные $a$ и $b$ пересекаются.

Решение
Докажите, что сечением пирамиды
ABCD плоскостью, параллельной
рёбрам
AC и
BD , является параллелограмм, причём для одной такой
плоскости этот параллелограмм будет ромбом. Найдите сторону этого
ромба, если
AC = a ,
BD = b .


Решение
В городе 57 автобусных маршрутов. Известно, что:
1) с каждой остановки на любую другую остановку можно попасть без пересадки;
2) для каждой пары маршрутов найдётся, и притом только одна, остановка, на
которой можно пересесть с одного из этих маршрутов на другой;
3) на каждом маршруте не менее трёх остановок.
Сколько остановок имеет каждый из 57 маршрутов?

Решение