ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что
+ + ... + = 0,
то точка плоскости, соответствующая z, лежит внутри этого n-угольника.
Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 354]
Пусть x, y, z – положительные числа и xyz(x + y + z) = 1. Найдите наименьшее значение выражения (x + y)(x + z).
Доказать, что cos 2π/5 + cos 4π/5 = – ½.
В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно углы α3, α1, α2. Через точки A1, A2, A3 проводятся прямые, образующие с l соответственно углы π – α1, π – α2, π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.
На плоскости даны четыре прямые, из которых никакие две не параллельны, и никакие три не пересекаются в одной точке. По каждой прямой с постоянной скоростью идёт пешеход. Известно, что первый встречается со вторым, с третьим и с четвёртым, а второй встречается с третьим и с четвёртым. Доказать, что третий пешеход встретится с четвёртым.
+ + ... + = 0,
то точка плоскости, соответствующая z, лежит внутри этого n-угольника.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|