ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию: ai ≥ k. Доказать, что a1 + a2 + ... + an = b1 + b2 + ... Решение |
Страница: << 185 186 187 188 189 190 191 >> [Всего задач: 1221]
Даны числа 1, 2, 3, ..., 1000. Найдите наибольшее число m, обладающее таким свойством: какие бы m из данных чисел ни вычеркнуть, среди оставшихся 1000 – m чисел найдутся два, из которых одно делится на другое.
Дано n точек, n > 4. Докажите, что можно соединить их стрелками так, чтобы из каждой точки в любую другую можно было попасть, пройдя либо по одной стрелке, либо по двум (каждые две точки можно соединить стрелкой только в одном направлении; идти по стрелке можно только в указанном на ней направлении).
Доказать, что a1 + a2 + ... + an = b1 + b2 + ...
Решить в целых числах уравнение = m.
Страница: << 185 186 187 188 189 190 191 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|