Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 499]
На гипотенузе AB прямоугольного треугольника ABC во внешнюю
сторону построен квадрат с центром в точке O. Докажите, что
CO — биссектриса прямого угла.
Даны три точки
A,
B,
C, лежащие на одной прямой, и точка
O вне этой прямой.
Обозначим через
O1,
O2,
O3 центры окружностей, описанных около треугольников
OAB,
OAC,
OBC. Доказать, что точки
O1,
O2,
O3 и
O лежат на одной
окружности.
Пусть точки
A ,
B ,
C лежат на окружности, а прямая
b касается этой окружности в точке
B . Из точки
P , лежащей
на прямой
b , опущены перпендикуляры
PA1 и
PC1 на прямые
AB и
BC соответственно (точки
A1 и
C1 лежат на
отрезках
AB и
BC ). Докажите, что
A1C1 AC .
Дана окружность с диаметром AB. Вторая окружность с центром
в точке A пересекает первую в точках C и D, а диаметр AB – в точке E. На дуге CE, не содержащей точки D, взята точка M, отличная от точек C и E. Луч BM пересекает первую окружность в точке N. Известно, что CN = a, DN = b. Найдите MN.
Дана окружность с диаметром PQ. Вторая окружность с центром в точке Q пересекает первую в точках S и T, а диаметр PQ в точке A. AB – диаметр второй окружности. На дуге SB, не
содержащей точки T, взята точка C, отличная от точек S и B. Отрезок PC пересекает первую окружность в точке D. Известно, что
SD = n, DC = m. Найдите DT.
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 499]