ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматриваются все призмы, в основании которых лежит выпуклый 2015-угольник. Найдите двугранные углы пирамиды ABCD , все ребра которой равны между собой. Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9. По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
В данную окружность впишите прямоугольный треугольник, катеты которого проходили бы через две данные точки внутри окружности.
Можно ли расположить на плоскости 1968 отрезков так, чтобы каждый из них обоими концами упирался строго внутрь других отрезков? |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 489]
Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?
Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.
Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок обоими своими концами упирался строго внутрь других отрезков?
Можно ли расположить на плоскости 1968 отрезков так, чтобы каждый из них обоими концами упирался строго внутрь других отрезков?
Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 489]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке