ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 55748

Темы:   [ Композиции поворотов ]
[ Центральная симметрия помогает решить задачу ]
[ Произвольные многоугольники ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте многоугольник с нечётным числом сторон, зная середины его сторон.

Прислать комментарий     Решение


Задача 55744

Темы:   [ Композиции поворотов ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Поворот помогает решить задачу ]
Сложность: 5-
Классы: 8,9

На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

Прислать комментарий     Решение


Задача 78676

Темы:   [ Композиции поворотов ]
[ Процессы и операции ]
[ Круг, сектор, сегмент и проч. ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5-
Классы: 8,9,10

Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.
Прислать комментарий     Решение


Задача 55746

 [Теорема Наполеона.]
Темы:   [ Композиции поворотов ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 8,9

На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
Прислать комментарий     Решение


Задача 57960

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .