ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сколько корней на отрезке [0, 1] имеет уравнение 8x(1 – 2x²)(8x4 – 8x² + 1) = 1? Какие выпуклые фигуры могут содержать прямую? В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.
Докажите, что при нечётном n > 1 справедливо равенство
По заданной последовательности положительных чисел q1,..., qn, ... строится последовательность многочленов следующим образом: Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма Докажите, что Пусть xy + yz + xz = 1. Докажите равенство: Рассмотрим число а) меньше 1/10; б) меньше 1/12; в) больше 1/15. Докажите неравенство Положительные числа a, b, c и d удовлетворяют условию 2(a + b + c + d) ≥ abcd. Докажите, что a² + b² + c² + d² ≥ abcd. Сумма восьми чисел равна 4/3. Оказалось, что сумма каждых семи чисел из этих восьми – положительна. Какое наименьшее целое значение может принимать наименьшее из данных чисел? Пусть a – заданное вещественное число, n – натуральное число, n > 1. Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна? |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 590]
X – число, большее 2. Некто пишет на карточках числа: 1, X, X², X³, X4, ..., Xk (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.
Все коэффициенты многочлена равны 1, 0 или –1.
Выбрать 100 чисел, удовлетворяющих условиям x1 = 1, 0 ≤ x1 ≤ 2x1, 0 ≤ x3 ≤ 2x2, ..., 0 ≤ x99 ≤ 2x98, 0 ≤ x100 ≤ 2x99, так, чтобы выражение
По заданной последовательности положительных чисел q1,..., qn, ... строится последовательность многочленов следующим образом:
Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна?
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 590]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке