ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

Вниз   Решение


Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 61137

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

При каких n
  а) многочлен  x2n + xn + 1  делится на  x² + x + 1?
  б) многочлен  x2nxn + 1  делится на  x² – x + 1?

Прислать комментарий     Решение

Задача 61141

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
[ Комплексные числа помогают решить задачу ]
Сложность: 3+
Классы: 9,10,11

Пусть P(xn) делится на  x – 1.  Докажите, что P(xn) делится на  xn – 1.

Прислать комментарий     Решение

Задача 65183

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Разложение на множители ]
[ Комплексные числа помогают решить задачу ]
Сложность: 3+
Классы: 9,10,11

Найдите все натуральные  n > 2,  для которых многочлен  xn + x² + 1  делится на многочлен  x² + x + 1.

Прислать комментарий     Решение

Задача 79243

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10

Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

Прислать комментарий     Решение

Задача 60973

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10,11

При каких n многочлен  1 + x² + x4 + ... + x2n–2  делится на  1 + x + x2 + ... + xn–1?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .