ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наименьшее количество точек на плоскости надо взять, чтобы среди попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 289]      



Задача 55211

Темы:   [ Неравенства с высотами ]
[ Неравенство треугольника ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

Пусть h1 и h2 — высоты треугольника, r — радиус вписанной окружности. Докажите, что $ {\frac{1}{2r}}$ < $ {\frac{1}{h_{1}}}$ + $ {\frac{1}{h_{2}}}$ < $ {\frac{1}{r}}$.

Прислать комментарий     Решение


Задача 79409

Темы:   [ Системы точек ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8

Какое наименьшее количество точек на плоскости надо взять, чтобы среди попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
Прислать комментарий     Решение


Задача 35460

Темы:   [ Ломаные ]
[ Неравенство треугольника (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Докажите, что всякую замкнутую ломаную периметра Р можно заключить в круг, радиус которого не превосходит Р/4.

Прислать комментарий     Решение

Задача 55250

Темы:   [ Неравенства с высотами ]
[ Неравенство треугольника ]
Сложность: 4-
Классы: 8,9

Существует ли треугольник со сторонами a = 7 и b = 2, если известно, что высота, опущенная на третью сторону этого треугольника, является средним геометрическим двух других высот?

Прислать комментарий     Решение


Задача 55681

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке K, причём точка K делит ломаную ACB на две части равной длины. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .