ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 289]      



Задача 54134

Темы:   [ Средняя линия треугольника ]
[ Неравенство треугольника ]
Сложность: 3+
Классы: 8,9

Две прямые, проходящие через точку C, касаются окружности в точках A и B. Может ли прямая, проходящая через середины отрезков AC и BC, касаться этой окружности?

Прислать комментарий     Решение


Задача 52799

Темы:   [ Концентрические окружности ]
[ Неравенство треугольника ]
Сложность: 3+
Классы: 8,9

Наименьшее расстояние между точками двух концентрических окружностей равно 2, а наибольшее равно 16. Найдите радиусы окружностей.

Прислать комментарий     Решение


Задача 67255

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Неравенство треугольника (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели медианы BK и CN, пересекающиеся в точке M. Какое наибольшее количество сторон четырёхугольника ANMK может иметь длину 1?
Прислать комментарий     Решение


Задача 79451

Темы:   [ Многоугольники (экстремальные свойства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 9

Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки.
Прислать комментарий     Решение


Задача 108968

Темы:   [ Описанные четырехугольники ]
[ Неравенство треугольника (прочее) ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 7,8,9

Доказать, что если окружность касается трёх сторон выпуклого четырёхугольника и не пересекает четвёртой, то сумма четвёртой и противоположной ей стороны меньше суммы остальных сторон четырёхугольника.
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .