Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами.
Докажите, что произведение этих чисел не может оканчиваться на 1988.

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 462]      



Задача 55035

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) медианы AD и EC пересекаются в точке O. Отношение радиуса окружности, вписанной в треугольник AOC, к радиусу окружности, вписанной в четырёхугольник ODBE, равно $ {\frac{2}{3}}$. Найдите отношение $ {\frac{AC}{BC}}$.

Прислать комментарий     Решение


Задача 55135

Темы:   [ Параллелограмм Вариньона ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9

Каждая сторона выпуклого четырёхугольника разделена на 8 равных частей. Соответствующие точки деления на противоположных сторонах соединены друг с другом, и полученные клетки раскрашены в шахматном порядке. Докажите, что сумма площадей черных клеток равна сумме площадей белых клеток.

Прислать комментарий     Решение


Задача 79533

Темы:   [ Делимость чисел. Общие свойства ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9,10

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами.
Докажите, что произведение этих чисел не может оканчиваться на 1988.

Прислать комментарий     Решение

Задача 108232

Темы:   [ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

На сторонах BC и CD параллелограмма ABCD взяты точки M и N соответственно. Диагональ BD пересекает стороны AM и AN треугольника AMN соответственно в точках E и F , разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка K , определяемая условиями EK || AD , FK || AB , лежит на отрезке MN .
Прислать комментарий     Решение


Задача 110883

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношения площадей ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

В треугольнике ABC, таком, что  AB = BC = 4  и   AC = 2,  проведены биссектриса AA1, медиана BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AC, AA1 и CC1;   б) AA1, BB1 и CC1.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .