ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан куб ABCDA1B1C1D1 с ребром a . На лучах C1C , C1B1 и C1D1 отложены соответственно отрезки C1M , C1N и C1K , равные a . Постройте сечение этого куба плоскостью, проходящей через точки M , N , K и найдите площадь полученного сечения.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 337]      



Задача 87019

Темы:   [ Свойства сечений ]
[ Куб ]
Сложность: 4
Классы: 8,9

Через середину диагонали куба проведена плоскость, перпендикулярная этой диагонали. Найдите площадь полученного сечения, если ребро куба равно a .
Прислать комментарий     Решение


Задача 87021

Темы:   [ Свойства сечений ]
[ Куб ]
Сложность: 4
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . На лучах C1C , C1B1 и C1D1 отложены соответственно отрезки C1M , C1N и C1K , равные a . Постройте сечение этого куба плоскостью, проходящей через точки M , N , K и найдите площадь полученного сечения.
Прислать комментарий     Решение


Задача 87028

Темы:   [ Свойства сечений ]
[ Отношение объемов ]
[ Скрещивающиеся прямые и ГМТ ]
[ Проектирование помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Докажите, что плоскость, проходящая через середины двух противоположных рёбер любой треугольной пирамиды, делит её объём пополам.
Прислать комментарий     Решение


Задача 87029

Темы:   [ Площадь сечения ]
[ Объем (прочее) ]
Сложность: 4
Классы: 8,9

Объём пирамиды ABCD равен 5. Через середины рёбер AD и BC проведена плоскость, пересекающая ребро CD в точке M . При этом DM:MC = 2:3. Найдите площадь сечения пирамиды указанной плоскостью, если расстояние от неё до вершины A равно 1.
Прислать комментарий     Решение


Задача 87035

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 8,9

На рёбрах BC и DC треугольной пирамиды ABCD взяты соответственно точки N и K , причём CN = 2BN , DK:KC = 3:2 . Известно, что M – точка пересечения медиан треугольника ABD . В каком отношении плоскость, проходящая через точки M , N , K , делит объём пирамиды ABCD ?
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 337]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .