ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основание пирамиды PABCD – параллелограмм ABCD . Точка N – середина ребра AP , точка K – середина медианы PL треугольника BPC , точка M лежит на ребре PB , причём PM = 5MB . В каком отношении плоскость, проходящая через точки M , N , K , делит объём пирамиды PABCD ?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 87033

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

На ребре DC треугольной пирамиды ABCD взята N , причём CN = 2DN , а на продолжениях рёбер CA и CB за точки A и B соответственно – точки K и M , причём AC = 2AK и MB = 2BC . В каком отношении плоскость, проходящая через точки M , N и K , делит объём пирамиды ABCD ?
Прислать комментарий     Решение


Задача 87034

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . Точка N – середина ребра AP , точка K – середина медианы PL треугольника BPC , точка M лежит на ребре PB , причём PM = 5MB . В каком отношении плоскость, проходящая через точки M , N , K , делит объём пирамиды PABCD ?
Прислать комментарий     Решение


Задача 87036

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . На рёбрах AB и PC взяты соответственно точки K и M , причём AK:KB = CM:MP = 1:2 . В каком отношении плоскость, проходящая через точки K и M параллельно прямой BD, делит объём пирамиды PABCD ?
Прислать комментарий     Решение


Задача 116413

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Основные свойства и определения правильных многогранников ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 10,11

Можно ли поверхность октаэдра оклеить несколькими правильными шестиугольниками без наложений и пробелов?

Прислать комментарий     Решение

Задача 65390

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Неравенства с трехгранными углами ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 10,11

Бумажный тетраэдр разрезали по трём ребрам, не принадлежащим одной грани. Могло ли случиться, что полученную развёртку нельзя расположить на плоскости без самопересечений (в один слой).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .