ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Какой должна быть следующая фигурка в ряду, изображённом на рисунке?

Вниз   Решение


Найдите ключ к "тарабарской грамоте"  — тайнописи, применявшейся ранее в России для дипломатической переписки: "Пайцике тсюг т "`камащамлтой чмароке"'  — кайпонили, нмирепяшвейля мапее ш Моллии цся цинсоракигелтой неменилти".

ВверхВниз   Решение


Впишите в следующее предложение какое-нибудь числительное (не цифрами, а словом или словами), чтобы предложение было верным.

В этом предложении ______________________ гласных букв.

ВверхВниз   Решение


а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

ВверхВниз   Решение


Докажите, что сумма углов пространственного четырёхугольника не превосходит 360o .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 87107

Темы:   [ Неравенства с углами ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Докажите, что угол наклонной с плоскостью есть наименьший из углов, образованных этой наклонной со всевозможными прямыми плоскости.
Прислать комментарий     Решение


Задача 87109

Темы:   [ Неравенства с углами ]
[ Неравенства с трехгранными углами ]
Сложность: 3
Классы: 8,9

Докажите, что каждый плоский угол выпуклого четырёхгранного угла меньше суммы трёх остальных.
Прислать комментарий     Решение


Задача 87110

Темы:   [ Неравенства с углами ]
[ Неравенства с трехгранными углами ]
Сложность: 3
Классы: 8,9

Докажите, что сумма углов пространственного четырёхугольника не превосходит 360o .
Прислать комментарий     Решение


Задача 77919

Темы:   [ Четырехугольник (неравенства) ]
[ Неравенства с углами ]
Сложность: 3
Классы: 8,9

У выпуклых четырёхугольников ABCD и A'B'C'D' соответственные стороны равны. Доказать, что если $ \angle$A > $ \angle$A', то $ \angle$B < $ \angle$B', $ \angle$C > $ \angle$C' и $ \angle$D < $ \angle$D'.
Прислать комментарий     Решение


Задача 73767

Темы:   [ Системы точек ]
[ Неравенства с углами ]
[ Метод ГМТ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .