ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Вниз   Решение


Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

ВверхВниз   Решение


Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.

ВверхВниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

ВверхВниз   Решение


Сторона основания правильной шестиугольной пирамиды равна , а угол боковой грани с плоскостью основания равен 60o . Найдите площадь сечения, проведённого через вершину пирамиды и меньшую диагональ основания.

ВверхВниз   Решение


Из шести палочек попарно различной длины сложены два треугольника (по три палочки в каждом). Всегда ли можно сложить из них один треугольник, стороны которого состоят из одной, двух и трех палочек соответственно?

ВверхВниз   Решение


С помощью циркуля и линейки постройте точку, из которой данный круг и данный отрезок видны под данными углами.

ВверхВниз   Решение


Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

ВверхВниз   Решение


Пусть  f(x) = x² + px + q.  При каких p и q выполняются равенства  f(p) = f(q) = 0?

ВверхВниз   Решение


В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
  а) 15 марта ещё не все жительницы будут знать новость, а 18 марта уже все?
  б) 25 марта ещё не все жительницы будут знать новость, а 28 марта уже все?

ВверхВниз   Решение


Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N. Докажите, что:
а) прямая MN проходит через середину P второй дуги;
б) длина касательной PQ к окружности S1 равна PA.

ВверхВниз   Решение


Авторы: Ганин Я., Rideau F.

Дан выпуклый четырехугольник ABCD . A' , B' , C' , D' – ортоцентры треугольников BCD , CDA , DAB , ABC . Докажите, что в четырехугольниках ABCD и A'B'C'D' соответствующие диагонали делятся точками пересечения в одном и том же отношении.

ВверхВниз   Решение


Прямая l , параллельная диагонали AC1 единичного куба ABCDA1B1C1D1 , равноудалена от прямых BD , A1D1 и CB1 . Найдите расстояния от прямой l до этих прямых.

ВверхВниз   Решение


Около шара объёма V описана правильная треугольная пирамида. Каков наименьший возможный объём этой пирамиды?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 127]      



Задача 87126

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 3
Классы: 8,9

Около шара объёма V описана правильная треугольная пирамида. Каков наименьший возможный объём этой пирамиды?
Прислать комментарий     Решение


Задача 87127

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Объем круглых тел ]
Сложность: 3
Классы: 8,9

Периметр равнобедренного треугольника равен P . Каковы должны быть его стороны, чтобы объём фигуры, полученной вращением этого треугольника вокруг основания, был наибольшим?
Прислать комментарий     Решение


Задача 87218

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Рассматриваются всевозможные прямоугольные параллелепипеды, объём каждого из которых равен 4, а основания являются квадратами. Найдите среди них параллелепипед с наименьшим периметром боковой грани и вычислите этот периметр.
Прислать комментарий     Решение


Задача 87219

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Рассматриваются всевозможные прямоугольные параллелепипеды, у которых одна из боковых граней является квадратом, а периметр нижнего основания равен 12. Найдите среди них параллелепипед с наибольшим объёмом и вычислите этот объём.
Прислать комментарий     Решение


Задача 87220

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Рассматриваются всевозможные прямоугольные параллелепипеды, объём каждого из которых равен , а одна из боковых граней являются квадратом. Найдите среди них параллелепипед с наименьшим периметром основания и вычислите этот периметр.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .