|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи 20 команд сыграли круговой турнир по волейболу. Точка M лежит на стороне BC треугольника ABC . Известно, что радиус окружности, вписанной в треугольник ABM , в два раза больше радиуса окружности, вписанной в треугольник ACM . Может ли отрезок AM оказаться медианой треугольника ABC ? Известно, что (m, n) > 1. Что больше φ(mn) или φ(m)φ(n)? Определение функции φ(n) см. в задаче 60758. Собрались 2n человек, каждый из которых знаком не менее чем с n присутствующими. Доказать, что можно выбрать из них четырёх человек и рассадить их за круглым столом так, что при этом каждый будет сидеть рядом со своими знакомыми (n Высота прямой призмы равна 1, основанием призмы служит ромб со стороной 2 и острым углом 30o . Через сторону основания проведена секущая призму плоскость, наклонённая к плоскости основания под углом 60o . Найдите площадь сечения. |
Страница: << 1 2 3 4 >> [Всего задач: 20]
Рассматриваются все призмы, в основании которых лежит выпуклый 2015-угольник.
При каких n можно раскрасить в три цвета все ребра n-угольной призмы (основания – n-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?
Можно ли рёбра n-угольной призмы раскрасить в три цвета так, чтобы на каждой грани были все три цвета и в каждой вершине сходились рёбра разных цветов, если а) n = 1995; б) n = 1996.
В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?
Страница: << 1 2 3 4 >> [Всего задач: 20] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|