ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что квадратные корни из комплексного числа z = a + ib находятся среди чисел w = ±
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа? С помощью одной двусторонней линейки восставьте перпендикуляр к данной прямой l в данной точке A.
Тетраэдр называется ортоцентрическим, если его высоты (или их
продолжения) пересекаются в одной точке. Докажите, что тетраэдр
ABCD ортоцентрический тогда и только тогда, когда две пары его
противоположных рёбер перпендикулярны, т.е. AB Три параллельные прямые касаются в точках A , B и C сферы радиуса 4 с центром в точке O . Найдите угол BAC , если известно, что площадь треугольника OBC равна 4, а площадь треугольника ABC больше 16. Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =2 , AD = 4 , BB1 = 12 . Точки M и K расположены на рёбрах CC1 и AD соответственно, причём CM:MC1 = 1:2 , AK = KD . Найдите угол между прямыми AM и KB1 .
Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.
Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15. Докажите, что если каждое из двух чисел является суммой квадратов двух целых чисел, то и их произведение является суммой квадратов двух целых чисел. Чему равна сумма φ(1) + φ(p) + φ(p2) + ... + φ(pα), где α #8211; некоторое натуральное число? Решите уравнение |x-2|+|x-1|+|x|+|x+1|+|x+2|=6.
Сфера с центром в точке O проходит через вершины K , L и M
треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в
точках A , B , C соответственно. Известно, что NL = 14 , KN = 16
и MN:KL = 2 |
Страница: 1 2 3 4 >> [Всего задач: 20]
Докажите, что высоты тетраэдра пересекаются в одной точке (ортоцентрический тетраэдр)}тогда и только тогда, когда отрезки, соединяющие середины противолежащих рёбер, равны.
Сфера с центром в точке O проходит через вершины A , B и C
треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках
K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и
AB:CD = 4
Сфера с центром в точке O проходит через вершины K , L и M
треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в
точках A , B , C соответственно. Известно, что NL = 14 , KN = 16
и MN:KL = 2
Тетраэдр называется ортоцентрическим, если его высоты (или их
продолжения) пересекаются в одной точке. Докажите, что тетраэдр
ABCD ортоцентрический тогда и только тогда, когда две пары его
противоположных рёбер перпендикулярны, т.е. AB
Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке.Докажите, что ортоцентрическом тетраэдре общие перпендикуляры каждой пары противоположных рёбер пересекаются в одной точке.
Страница: 1 2 3 4 >> [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке