Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 3+ Классы: 10,11
|
В основании четырёхугольной пирамиды
SABCD лежит
параллелограмм
ABCD . Докажите, что для любой точки
O внутри пирамиды сумма объёмов тетраэдров
OSAB
и
OSCD равна сумме объёмов тетраэдров
OSBC и
OSDA .
|
|
Сложность: 3+ Классы: 10,11
|
На левую чашу весов положили два шара радиусов 3 и 5,
а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары
изготовлены целиком из одного и того же материала.)
|
|
Сложность: 4+ Классы: 10,11
|
Назовем многогранник хорошим, если его
объем (измеренный в
м3 ) численно равен площади его поверхности
(измеренной в
м2 ).
Можно ли какой-нибудь
хороший тетраэдр разместить внутри какого-нибудь хорошего
параллелепипеда?
Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны
h1,
h2,
h3, то объём тетраэдра не меньше, чем
h1h2h3/3.
|
|
Сложность: 4 Классы: 10,11
|
Найдите наибольшее значение объёма пирамиды
SABC при следующих
ограничениях
SA 4, SB 7, SC 9, AB = 5, BC 6,
AC 8.
Страница: 1
2 >> [Всего задач: 8]