ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите наибольший объём конуса с образующей, равной a .

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 108]      



Задача 87120

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Конус ]
Сложность: 3
Классы: 8,9

Найдите высоту и радиус основания конуса наибольшего объёма, вписанного в сферу радиуса R .
Прислать комментарий     Решение


Задача 87124

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Конус ]
Сложность: 3
Классы: 8,9

Конус описан около куба следующим образом: четыре вершины куба лежат в плоскости основания конуса, а четыре другие вершины – на его боковой поверхности. Какой наименьший объём может иметь такой конус, если ребро куба равно a ?
Прислать комментарий     Решение


Задача 87433

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Конус ]
Сложность: 3
Классы: 10,11

Найдите наибольший объём конуса с образующей, равной a .
Прислать комментарий     Решение


Задача 87443

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Конус ]
[ Цилиндр ]
Сложность: 3
Классы: 10,11

Найдите радиус основания цилиндра наибольшего объёма, вписанного в конус, радиус основания которого равен 3.
Прислать комментарий     Решение


Задача 87475

Темы:   [ Правильная пирамида ]
[ Конус ]
Сложность: 3
Классы: 10,11

Двугранный угол при боковом ребре правильной треугольной пирамиды равен 2α . Высота пирамиды равна h . Найдите объём конуса, описанного около пирамиды.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 108]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .