ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Двугранный угол при боковом ребре правильной треугольной пирамиды равен 2α . Высота пирамиды равна h . Найдите объём конуса, описанного около пирамиды.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 538]      



Задача 87472

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды, боковое ребро которой равно l и двугранный угол между смежными боковыми гранями равен β .
Прислать комментарий     Решение


Задача 87474

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Двугранный угол между смежными боковыми гранями правильной четырёхугольной пирамиды равен α , а сторона основания равна b . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87475

Темы:   [ Правильная пирамида ]
[ Конус ]
Сложность: 3
Классы: 10,11

Двугранный угол при боковом ребре правильной треугольной пирамиды равен 2α . Высота пирамиды равна h . Найдите объём конуса, описанного около пирамиды.
Прислать комментарий     Решение


Задача 87498

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Высота правильной треугольной пирамиды вдвое больше стороны основания. Найдите: а) угол между боковым ребром и плоскостью основания; б) угол между боковой гранью и плоскостью основания.
Прислать комментарий     Решение


Задача 87499

Темы:   [ Правильная пирамида ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 10,11

Сторона основания правильной треугольной пирамиды равна a , высота пирамиды равна 2a . Найдите расстояние между противоположными рёбрами.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .