ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая l образует угол α с плоскостью P . Найдите ортогональную проекцию на плоскость P отрезка, равного d , расположенного на прямой l .

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 145]      



Задача 35618

Темы:   [ Правильная пирамида ]
[ Ортогональная проекция (прочее) ]
Сложность: 2+
Классы: 10,11

Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники.
Может ли угол грани при вершине пирамиды равняться 100°?

Прислать комментарий     Решение

Задача 103823

Темы:   [ Наглядная геометрия в пространстве ]
[ Ортогональная проекция (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Шень А.Х.

Если смотреть на аквариум спереди, то рыбка проплыла, как показано на левом рисунке. А если справа — то как на правом рисунке. Нарисуйте вид сверху.

Прислать комментарий     Решение


Задача 87416

Темы:   [ Боковая поверхность призмы ]
[ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 10,11

Расстояние между любыми двумя боковыми рёбрами наклонной треугольной призмы равно a . Боковое ребро равно l и наклонено к плоскости основания под углом 60o . Найдите площадь полной поверхности призмы.
Прислать комментарий     Решение


Задача 87581

Темы:   [ Углы между прямыми и плоскостями ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Прямая l образует угол α с плоскостью P . Найдите ортогональную проекцию на плоскость P отрезка, равного d , расположенного на прямой l .
Прислать комментарий     Решение


Задача 87609

Темы:   [ Площадь и ортогональная проекция ]
[ Параллельное проектирование (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 10,11

Найдите сторону правильного треугольника, являющегося ортогональной проекцией треугольника со сторонами , 3 и на некоторую плоскость.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 145]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .