Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.

Вниз   Решение


Выведите из теоремы 61013 то, что   – иррациональное число.

ВверхВниз   Решение


Основанием пирамиды SABC является правильный треугольник ABC , сторона которого равна . Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны AC равно 1. Синус угла OBA относится к синусу угла OBC как 2:1 . Площадь грани SAB равна . Найдите объём пирамиды.

ВверхВниз   Решение


В выпуклом четырехугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырехугольника. Докажите, что диагонали равны.

ВверхВниз   Решение


Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.

ВверхВниз   Решение


Докажите, что в любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник.

ВверхВниз   Решение


Автор: Яглом И.М.

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.

ВверхВниз   Решение


На плоскости дан прямой угол. Окружность с центром, расположенным вне этого угла, касается продолжения одной из его сторон, пересекает другую сторону в точках A и B и пересекает биссектрису этого угла в точках C и D.  AB = 4CD = 2.  Найдите радиус окружности.

ВверхВниз   Решение


На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите площадь треугольника BCK, если BC = a, CA = b.

ВверхВниз   Решение


Из середины основания треугольника проведены прямые, параллельные боковым сторонам. Докажите, что площадь полученного таким образом параллелограмма равна половине площади треугольника.

ВверхВниз   Решение


Точки M и N лежат на сторонах соответственно AD и BC ромба ABCD, причём DM : AM = BN : NC = 2 : 1. Найдите MN, если известно, что сторона ромба равна a, а $ \angle$BAD = 60o.

ВверхВниз   Решение


В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении  AN : BN = 2 : 1.  Найдите тангенс угла DNC.

ВверхВниз   Решение


В одной из граней двугранного угла, равного ϕ , взята точка A на расстоянии a от ребра. Найдите расстояние от точки A до плоскости другой грани.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 93]      



Задача 87341

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник ABC , сторона которого равна . Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны AC равно 1. Синус угла OBA относится к синусу угла OBC как 2:1 . Площадь грани SAB равна . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87343

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник, сторона которого равна 1. Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны CA равно , а расстояние от O до AB относится к расстоянию от O до BC как 3:4 . Площадь грани SBC равна . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87589

Темы:   [ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

В одной из граней двугранного угла, равного ϕ , взята точка A на расстоянии a от ребра. Найдите расстояние от точки A до плоскости другой грани.
Прислать комментарий     Решение


Задача 87591

Темы:   [ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Пусть A – некоторая точка в пространстве, A1 – проекция точки A на плоскость α , AA1 = a . Через точку A проходит плоскость, образующая угол ϕ с плоскостью α и пересекающая плоскость α по прямой l . Найдите расстояние от точки A1 до прямой l .
Прислать комментарий     Решение


Задача 87592

Темы:   [ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Пусть A – некоторая точка в пространстве, не принадлежащая плоскости α . Рассмотрим всевозможные плоскости, проходящие через точку A и образующие один и тот же угол с плоскостью α . Докажите, что все прямые, по которым плоскости, проходящие через точку A , пересекаются с плоскостью α , касаются одной окружности.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .