ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся
  а) не меньше пяти рёбер,
  б) ровно пять рёбер?

   Решение

Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 538]      



Задача 111612

Темы:   [ Площадь сечения ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Шар, вписанный в правильную пирамиду ABCD , касается грани ADC в точке K . Через сторону AB основания ABC пирамиды и точку K проведено сечение. Найдите площадь этого сечения, если сторона основания пирамиды равна b , а высота пирамиды равна b .
Прислать комментарий     Решение


Задача 116076

Темы:   [ Четырехугольная пирамида ]
[ Цилиндр ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Bсе ребра правильной четырехугольной пирамиды равны 1, а все вершины лежат на боковой поверхности (бесконечного) прямого кругового цилиндра радиуса R. Найдите все возможные значения R.

Прислать комментарий     Решение

Задача 98059

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Свойства сечений ]
[ Усеченная пирамида ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся
  а) не меньше пяти рёбер,
  б) ровно пять рёбер?

Прислать комментарий     Решение

Задача 116236

Темы:   [ Комбинаторика (прочее) ]
[ Перебор случаев ]
[ Пирамида (прочее) ]
Сложность: 5
Классы: 10,11

По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.

Прислать комментарий     Решение

Задача 73537

Темы:   [ Окружности на сфере ]
[ Касающиеся окружности ]
[ Правильная пирамида ]
[ Многогранные углы ]
[ Неравенства с трехгранными углами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 7
Классы: 10,11

Дана сфера радиуса 1. На ней расположены равные окружности γ0, γ1, ..., γn радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ1, ..., γn; кроме того, касаются друг друга окружности γ1 и γ2, γ2 и γ3, ..., γn и γ1. При каких n это возможно? Вычислите соответствующий радиус r.
Прислать комментарий     Решение


Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .