ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

   Решение

Задачи

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 769]      



Задача 76436

Темы:   [ Треугольник (построения) ]
[ Периметр треугольника ]
[ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 9

На плоскости дан угол, образованный двумя лучами a и b, и некоторая точка M.
Провести через точку M прямую c так, чтобы треугольник, образованный прямыми a, b и c, имел периметр данной величины.

Прислать комментарий     Решение

Задача 98128

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Автор: Паровян А.

Пусть в прямоугольном треугольнике AB и AC – катеты,  AC > AB.  На AC выбрана точка E, а на BC – точка D так, что  AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как  3 : 4 : 5.

Прислать комментарий     Решение

Задача 98408

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Хорды и секущие (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 7,8,9

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

Прислать комментарий     Решение

Задача 102701

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
  а) Найдите отношение  BD : BE,  если  AD = 8  и  AE = 2.
  б) Сравните площади треугольников BDE и BDF.

Прислать комментарий     Решение

Задача 108135

Темы:   [ Вневписанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Окружность, вписанная в угол ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

На одной стороне угла с вершиной O взята точка A, а на другой – точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O1, вписанная в треугольник OAB, и окружность с центром O2, касающаяся стороны AC и продолжений сторон OA и OC треугольника AOC. Докажите, что если  O1A = O2A,  то треугольник ABC равнобедренный.

Прислать комментарий     Решение

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .