Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Сколько корней на отрезке  [0, 1]  имеет уравнение   8x(1 – 2x²)(8x4 – 8x² + 1) = 1?

Вниз   Решение


Какие выпуклые фигуры могут содержать прямую?

ВверхВниз   Решение


В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

ВверхВниз   Решение


Докажите, что при нечётном  n > 1  справедливо равенство  

ВверхВниз   Решение


По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

ВверхВниз   Решение


Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


Пусть xy + yz + xz = 1. Докажите равенство:

$\displaystyle {\dfrac{x}{1-x^2}}$ + $\displaystyle {\dfrac{y}{1-y^2}}$ + $\displaystyle {\dfrac{z}{1-z^2}}$ = $\displaystyle {\dfrac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}}$.


ВверхВниз   Решение


Рассмотрим число     Докажите, что оно

а) меньше 1/10;   б) меньше 1/12;   в) больше 1/15.

ВверхВниз   Решение


Докажите неравенство     при любых натуральных n и k.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 590]      



Задача 79486

Темы:   [ Линейные неравенства и системы неравенств ]
[ Неравенства с модулями ]
[ Разложение на множители ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что ни для каких чисел x, y, t не могут одновременно выполняться три неравенства:  |x| < |y − t|, |y| < |t − x|, |t| < |x − y|.

Прислать комментарий     Решение

Задача 88320

Темы:   [ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Дано 1993 числа. Известно, что сумма любых четырёх чисел положительна. Верно ли, что сумма всех чисел положительна?

Прислать комментарий     Решение

Задача 98473

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 10,11

Докажите неравенство     при любых натуральных n и k.

Прислать комментарий     Решение

Задача 98590

Темы:   [ Линейные неравенства и системы неравенств ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В банке работают 2002 сотрудника. Все сотрудники пришли на юбилей, и их рассадили за один круглый стол. Известно, что зарплаты сидящих рядом различаются на 2 или 3 доллара. Какой наибольшей может быть разница двух зарплат сотрудников этого банка, если известно, что все зарплаты сотрудников различны?

Прислать комментарий     Решение

Задача 107857

Темы:   [ Линейные неравенства и системы неравенств ]
[ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Пусть a, b, c – такие целые неотрицательные числа, что   28a + 30b + 31c = 365.  Докажите, что  a + b + c = 12.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .